

Miniature goes Modular: Principles and Research Applications for Modular Microscale Systems from Sample Preparation to Detection

Yolanda Fintschenko, Ph.D.

Director of Business Development

LabSmith

Livermore,CA

μ/nTAS: Development Sequence

Prototype

- of increasingly realistic
 - Trained Expert(s) operates

conditions

• Device testable in series

Product

- Something non-exper will buy
- Customer Run

Proof of Concept

- Publishable and/or reproducible results
- Original inventor(s) operate

Ensuring a Success – Experimental Parameter Control

Fluid/Pressure

Electric Fields

LabSmith HVS 448 8-Channel High Voltage Sequencer

Connections

<u>Detection/</u> <u>Imaging</u>

LabSmith SVM or Other Detector Suitable for the Application

Microfluidic Separations – They're Electric

- Electrophoresis
 - Analysis of Lithium in Blood
 - Protein size separations
 - DNA/RNA sequencing
- Chromatography
 - Electrokinetic HPLC
 - Capillary Electrochromatography
- Hybridization Assays
 - Immunization assays
 - PCR
- Dielectrophoresis
 - Cells
 - Biopolymers

LabSmith HVS 448 8-Channel High Voltage Sequencer

Aqueous/Organic Gradient Control Using the HVS448

Wheeler, et al. Anal. Chem., Gradient Elution in Microchannel Electrochromatography, 2009, 81, 3851–3857.

Gradient Elution of Tryptic Digest of FITC-Casein using HVS

Wheeler, A.R. et al., Anal. Chem., Gradient Elution in Microchannel Electrochromatography, 2009, 81, 3851–3857.

Monitoring More Than Electric Fields

Synchronized Video Microscope

- PIV measurements
- Bottom-up viewing and illumination
- Motionless stage for unperturbed microsystems

Going with the Flow – micro Particle Image Velocimetry

μPIV results showing the measured electrokinetic velocities as a function of pH and conductivity.

pH 6, 25μS, 800 V

pH 9,100μS, 800 V

pH6, 100μS, 800 V

Lapizco, et al. Anal Bioanal Chem (2009) 394:293-302.

Imaging On-Chip Protein Concentration with the HVS 448 and SVM 340

Lapizco-Encinas, B.H., et al., "Protein manipulation with insulator-based dielectrophoresis and direct current electric fields, Journal of Chromatography A, Volume 1206, Issue 1, 3 October 2008, Pages 45-51.

Automated Pathogen Detection

The Sandia automated sample preparation (ASP) system had a total cycle time (included sample prep and on-chip analysis) of 15 minutes for *Bacillus subtilis*.

Vandernoot et al, Anal. Chem. 2007, 79, 5763-5770

CapTite™ Fluid Connections and Sample Preparation System

Reaction Cartridge

Sample /Buffer Syringe Pump

Assay Breadboard – Cross Sectional View

Controlling Flow with Pressure

Programmable Syringe Pump

- Breadboard mounted
- •Inter-compatible with LabSmith's complete line of CapTite™ Microfluidic Components.
- Low dead volumes
- •500 PSI max
- •Connects directly to 360 µm capillary tubing,
- Volume resolution of 10 nanoliters
- Volume and flow rate accuracy of ~1%.

Conclusion

- LabSmith provides practical solutions to control labon-a-chip experiments for ideas on the path to products
 - Voltage control
 - Pressure-driven flow control
 - Fluid interconnects
 - Modular sample prep
 - Imaging and detection

Acknowledgements

LabSmith Customers

 Aaron Wheeler, Michael Watson, and the Wheeler Lab

 Blanca Lapizco-Encinas and Lapizco-Encinas Lab

Sandia National Laboratories

 Gabriela Chirica, Ron Renzi, and many more

