Innovative Electronics for Experimental Research

Automated Modular Interface for Microfluidic Separations and Fluorescent Detection

10

<u>Yolanda Fintschenko, Ph.D.</u>¹, K. Pace¹, E.B. Cummings¹, H. Becker², C. Gartner²

¹ LabSmith, Inc., 6111 Southfront Rd., Ste. E., Livermore, CA 94551

²microfluidic-ChipShop, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany

µ/nTAS: Development Sequence

Product

Prototype

- Device tested in increasingly realistic conditions
- Operated by trained expert(s)
- Publishable and/or reproducible results

Proof of

Concept

Operated by inventor(s)

 Operated by customer(s)

Chip-to-World Interfaces

Syringe Pump

LabSmith

Types of Interface Controls

Integrated Compression Adhesive

Pros and Cons of Integrated Interfaces

Advantages

- Low losses, dead volume
- Multi-functional components

Disadvantages

- Component failure = device failure
- Material dependent

Integrated Interfaces

Fluidigm Dynamic Array

Zeng, Y. et al. Anal. Chem. 2010, 82 (8), pp 3183–3190.

Pros and Cons of Adhesive Interfaces

Advantages

- Low pressure or high pressure
- Electrokinetic flow
- Pressure-driven flow
- Flexible footprint
- Isolated from component failure

Disadvantages

- Material sensitive
- Requires skill to assemble

CapTite™ Adhesive Interfaces

On-Chip LabSmith CapTite[™] Bonded Port Connectors, with Reservoirs and Electrodes

Fluid and Electrical Connection with Visualization

Synchronized Video Microscope

Synchronized Video Microscope with integrated BreadBoard (iBB) and CapTite[™] Reservoirs

- Electrode connectors
- Bottom-up viewing and illumination
- Motionless stage for unperturbed microsystems

On-Chip Injection

Pinched Injection of Oregon Green Imaged on SVM340 with EPI-BLUE Module Voltage Programmed on HVS448 3000D

On-Chip Injection Equipment

Voltage Programmed on HVS448 3000D

Pinched Injection of Oregon Green Imaged on SVM340 with EPI-BLUE Module

Pros and Cons of Compression Interfaces

Advantages

- Easy assembly
- Low pressure
- Electrokinetic flow
- Pressure-driven flow
- No adhesives/reusable
- Material insensitive
- Component failure somewhat isolated

Disadvantages

- High pressure
- Fixed detection/observation window
- Fixed via footprint

Integrating Fluid Connections, Pressure and Visualization

•No Glue

Inter-compatible with LabSmith's complete line of <u>CapTite™</u>
 <u>Microfluidic Components</u> and SVM340
 Low dead volumes
 Positive pressure

Integrating Temperature Control

microfluidic ChipShop Fluid connection • Heater Peltier Cooler Imaging

Compression Manifold Dimensions

- Use with any material
- **Off the shelf**
- **Mini-luer** connections
- **Pressures up** to 250 psi

Manifold Chip Dimensions

Integration of Fluid Connections, Pressure and Visualization

•No Glue

 Inter-compatible with LabSmith's complete line of <u>CapTite™</u> <u>Microfluidic Components</u> and SVM340

Low dead volumes

Visualization: Fluid Flow in a Pressure Manifold

Controlling Flow with Pressure

Programmable Syringe Pump

Integrated Bread Board (iBB)

- Breadboard mounted
- Inter-compatible with LabSmith's complete line
- of <u>CapTite[™] Microfluidic Components</u>.
- Low dead volumes
- •500 PSI max
- •Connects directly to 360 µm capillary tubing,
- •Volume resolution of 10 nanoliters
- •Volume and flow rate accuracy of ~1%.

Controlling Flow with Valves

Manual Valve

Automated Valve Breadboard mounted Inter-compatible with LabSmith's complete line of <u>CapTite[™] Microfluidic Components</u>. •nl and μl valve volumes •5000 PSI max •Connects directly to 360 µm capillary tubing, iBB

1/16" PEEK tubing

Rapid Flow Response

Vacuum Compression Manifold

Vacuum sealLow pressure application

Vacuum Compression Manifold

iDEP Set-Up with Vacuum Manifold

•Inter-compatible with LabSmith HVS448 and SVM340

Insulator-Based Dielectrophoresis (iDEP)

Real-Time iDEP with Vacuum Manifold

SINUSOIDAL SIGNAL

750 V 1000 ms (1 Hz)

Courtesy of Dr. Blanca Lapizco-Encinas, CINVESTAV

Conclusion

- LabSmith provides practical solutions to control lab-on-a-chip experiments for ideas on the path to products
 - Voltage control
 - Pressure-driven flow control
 - Fluid interconnects
 - Imaging and detection

Acknowledgements

- microfluidicChipShop
 - Chips
 - Expertise
 - iBB Manifold

• Dr. Blanca Lapizco-Encinas

- Vacuum Manifold Data

