
LabSmith Application Note
Logging Data in uProcess™

By Michael Duperly and Annika Armstrong
LabSmith, Inc., Livermore, CA 94550

LabSmith’s uProcess™ microfluidic automation software
lets you track statuses and measurements from
connected uDevices using data logs. Data logs are useful
for analyzing the readings of individual uDevices, tracking
their changes over time, comparing data from several
different uDevices simultaneously, and logging
experimental parameters. The latest version of uProcess
introduces custom data logs for greater flexibility.

Introduction

Data logs made with uProcess are saved as .csv
spreadsheets on your computer. All logs contain
columns for the time of day and the amount of time
passed since logging started. Then, depending on
the connected uDevices, additional columns display
all other traceable measurements. The data collected
by different uDevices is shown in Table 1.

Table 1. uDevice Data Collection

uDevice Data Collected

4VM
valve

manifold

AV201
AV202
AV303
AV801
Valves

• Valve state

4AM
sensor

manifold

uPS
pressure

sensor

• Pressure
• Compensation temperature

uTS
temperature

sensor

• Probe temperature
• Compensation temperature

4PM
power

manifold
uTE

• Status
• Voltage
• Current

uEP01 electrophoresis
power module

• Voltage
• Current
• Flags

SPS01 syringe pump • Volume

Third-party devices • Varies depending on device

In data logs, recorded entries have the same default
units as uProcess. However, 4VM entries display the
state of each channel using numbers rather than

descriptors (like “Position A,” “Position B,” and
“Closed”). The corresponding values are shown in
Table 2.

Table 2. Log Entries for Valve Positions

Valve
Type Position / Movement Corresponding

Log Value

AV201

AV202

AV303

At Position A (left) 1

At Closed (middle) 2

At Position B (right) 3

Moving from Position A 5

Moving from Closed 6

Moving from Position B 7

AV801

At Position 1 1

At Position 2 2

… …

At Position 8 8

Did not detect Position 1 9+

Any
Disconnected / indeterminate

position 15

Stuck / stalled -1

There are two main ways to create a data log. First,
data collection can be manually started and stopped.
This is best for collecting data as you change the
states of uDevices with the Interfaces tab in
uProcess. Second, data collection can be
automatically started and stopped via script
commands. This is best for collecting data while a
script is running. In both cases, data is collected
from all connected uDevices.

Creating a Data Log Manually

Logging device statuses and measurements from
uDevices while manually changing their settings
does not require a script. First, connect any uDevices
for intended data collection. Then, go to the View
tab in uProcess and click Status/Meas Logging
Options. This opens the Status Tracing Settings
window, with options for how often data is collected
(“log entry interval”) and whether uProcess should
automatically name and save log files. If log files are
not automatically named, uProcess will request a
name each time a new log file is created (see Fig. 1).

https://labsmith.com/product/uprocess-manifold-for-valve-control-4vm02/
https://labsmith.com/product/uprocess-automated-3-port-selector-valve-av201/
https://labsmith.com/product/uprocess-automated-4-port-selector-valve-av202/
https://labsmith.com/product/uprocess-automated-6-port-injection-valve-av303/
https://labsmith.com/search/?q=av801
https://labsmith.com/product/uprocess-analog-sensor-manifold-4am01/
https://labsmith.com/product/uprocess-pressure-sensor-ups/
https://labsmith.com/product/uprocess-temperature-sensor-uts/
https://labsmith.com/product/uprocess-power-manifold-4pm01/
https://labsmith.com/product/uprocess-thermal-electric-module-ute/
https://labsmith.com/product/uprocess-electrophoresis-power-module-uep01-300/
https://labsmith.com/product/uprocess-syringe-pump-sps01/
https://labsmith.com/product/uprocess-automated-3-port-selector-valve-av201/
https://labsmith.com/product/uprocess-automated-4-port-selector-valve-av202/
https://labsmith.com/product/uprocess-automated-6-port-injection-valve-av303/
https://labsmith.com/search/?q=av801

 5981 Graham Court | Livermore, CA 94550 | Phone (925) 292-5161
 www.labsmith.com | info@labsmith.com

Figure 1. Status Tracing Settings

Once you have configured these settings, click OK.
Next, go to the File tab and click Log.
Status/Measurements (see Figure 2).

Figure 2. Manually enabling logging

If you did not opt to auto-name log files earlier, you
will now be asked to choose a file name and file save
location. Otherwise, the file is automatically created,
and logging begins. Now, if you change device
states or have connected sensors, state changes and
measurements are logged.

Data will continue to be collected until you uncheck
Log Status/Measurements, click Rescan Devices,
or close uProcess.

Creating a Data Log Automatically

Device statuses and measurements can be
automatically logged using the scripting feature in
uProcess. First, write a script to complete your
desired task per usual. Then, simply add a Log(on)
command at the beginning to start collecting data,
and a Log(off) command at the end to stop
collecting data.

*Syringe = SPS 80 ul

Log(“C:\Temp\example name.csv”)

 Syringe: MoveTo(80.0 ul)
 WaitDone()

Log(off)

If you did not opt to auto-name log files earlier, you
will be asked to choose a file name and file save
location upon running the script. Otherwise, the file
is automatically created, and logging begins. Data
collection occurs only during the duration between
Log(on) and Log(off) in the script. The resulting log
file will contain columns for all connected uDevices,
including those not mentioned in the script.

Additionally, a Log(“optional filename”)
command can be used in place of a Log(on)
command to start logging and to pre-name log files.
The file name should end in .csv and the entire file
name/path must be in quotes. If you include a
directory, make sure it exists and that you have
access.

When using the Log(“optional filename”) command
without including a directory, log files are saved to the
same location specified in the Status Tracing Settings
window.

 5981 Graham Court | Livermore, CA 94550 | Phone (925) 292-5161
 www.labsmith.com | info@labsmith.com

NOTE: if you do not use a unique file name each time
you run the script, new data will be entered into the
preexisting log file of the same name (after the last
occupied row in the spreadsheet).

Creating a Custom Data Log

uProcess version 2.00.64 and later includes a
custom-defined data log feature. These data logs
allow standard or user-defined variables to be
logged at specified times within a script via
commands.

All commands used to create custom logs must
referece a file for entering text into. Treat the file as a
variable; define it at the start of the script and simply
reference the variable in each command instead of
the whole file path. Include a file name, type, and
directory (make sure it exists and that you have
access) when defining the file.

file = “C:\Temp\example name.csv”

NOTE: the file type should be .csv and the entire file
path must be enclosed by quotes. Also, if you do not
use a unique file name each time you run the script,
new data will be entered into the preexisting log file
of the same name (after the last occupied row in the
spreadsheet).

Within each command, parameters (true, 1, false, or
0) indicate whether uProcess should write column
headings or enter rows of data into the log. Using
“true” (or 1) tells uProcess to write the name of the
object or uDevice rather than entering a
measurement or value. This is used for generating
headings in the log file. “False” (or 0, or the absence
of the parameter) tells uProcess to enter the
measurement/value. This is used for generating
rows of data below the column headings.

LogEntry

This command tracks the time of day and the amount of
time passed since logging started.

LogEntry(file, true)
LogEntry(file, 1)

Writes “Time of day” and
“Time (s)”

LogEntry(file, false)
LogEntry(file, 0)
LogEntry(file)

Logs the values of the time
of day and time passed

LogMeasurements

This command tracks the same measurements from
connected uDevices as a standard data log (see Table 1
for collected data).

LogMeasurements(file, true)
LogMeasurements(file, 1)

Writes the names of
any connected
uDevices

LogMeasurements(file, false)
LogMeasurements(file, 0)
LogMeasurments(file)

Logs the statuses of
any connected
uDevices

LogVariables

This command tracks all standard and user-defined
variables in the script.

LogVariables(file, true)
LogVariables(file, 1)

Writes the names of
any variables

LogVariables(file, false)
LogVariables(file, 0)
LogVariables(file)

Logs the values of any
variables

NOTE: the list of standard variables appears in the
Sequencer window when the script is run. Available
variables correspond to devices referenced in the
script. For example, Figure 3 shows the variables
available when a script uses one syringe pump and
one valve.

 5981 Graham Court | Livermore, CA 94550 | Phone (925) 292-5161
 www.labsmith.com | info@labsmith.com

Figure 3. Variable list

LogItem

This command tracks a singular uDevice, variable,
expression, or enters text into the log.

LogItem(file, x, true)
LogItem(file, x, 1)

Writes the name of the
measurement, variable,
expression, or “text” (in
double quotes)

LogItem(file, x, false)
LogItem(file, x, 0)
LogItem(file, x)

Logs the value of the
measurement, variable,
expression, or the “text”

NOTE: the “x” is a placeholder for the desired
measurement, variable, expression, or “text” in the
log.

Organizing the custom log commands into two
separate functions is recommended. Designate one
for creating column headings and the other for
generating rows of data (e.g. LogHeader and LogRow).
Place (or call) LogHeader before LogRow so that
headings appear before rows of data in the log.
Ensure that the commands in each function are
written in a corresponding order so that the column
headings made with LogHeader align with the data
entries created by LogRow (see the following
example).

Organizing LogHeader and LogRow Example Script

LogHeader:
 LogEntry(file, 1)
 LogVariables(file, 1)
 LogItem(file, “sample text”, 1)
 return

LogRow:
 LogEntry(file)
 LogVariables(file)
 LogItem(file, *item*)
 return

The above script will create one row of headings and
one row of data. The functions in the LogRow
subroutine must be called every time data is to be
logged. This can be achieved by putting the LogRow
function in a loop, or by calling the function following
an event, as described in the next section.

Event-Triggered Logging

The custom-defined logging feature is most
commonly used to log variables after an event, such
as upon reaching a certain temperature, pressure,
volume, time, or cycle count. In the following
example, a syringe pump is used to pressurize a
reservoir. The event log records the time and the
number of cycles required to achieve the desired
pressure (see the example script).

 5981 Graham Court | Livermore, CA 94550 | Phone (925) 292-5161
 www.labsmith.com | info@labsmith.com

Event-Triggered Logging Example Script

*4VM = 4VM
*Syringe = SPS 80 ul
*P22904 = uPS 800 kPa

file = "C:\Temp\example name.csv"
Count = 1

Call LogHeader

Fill_Syringe:
 4VM: SetValves(3, 0, 0, 0)
 Syringe: SetFlowRate(300.0 ul/min)
 Syringe: MoveTo(80.0 ul)
 WaitDone()

Dispense_Syringe:
 4VM: SetValves(1, 0, 0, 0)
 Syringe: MoveTo(1.0 ul)

Loop:
 if (Syringe.Volume <= 5 ul)
 {
 Count = Count+1
 Goto Fill_Syringe
 }

 if (P22904.Reading > 100 kPa)
 {
 Syringe: Stop()
 Call LogRow
 Goto End
 }

 Wait(500 ms)
 Goto Loop

End:
 Quit

LogHeader:
 LogEntry(file, 1)
 LogItem(file, Count, 1)
 LogItem(file, “Pressure”, 1)
 return

LogRow:
 LogEntry(file)
 LogItem(file, Count)
 LogItem(file, P22904.Reading)
 return
The example script creates headings for “Time of
Day,” “Time (s),” “Count,” and “Pressure.” Upon
reaching the specified pressure, one line of data is
logged. The resulting data log is shown in Figure 4.

Figure 4. Event log

Troubleshooting

Problem Solution

Log entries for
user-defined
variables in a
custom data log
are not changing.

User-defined variables do not
update automatically like the
default variables (volumes,
pressure readings, etc.).
Redefine these variables
immediately before the LogRow
function to log a row of data.

Log entries are
recorded after
previous entries in
an existing log file.

Assign a unique file name each
time you run the script when
using the Log(“optional
filename”) command or when
creating a custom data log.

Script Error: Failed
to open file.

The defined file name already
exists and the file is open or
inacessible. Either close the file
(and the new data will be logged
in the prexisting log file), or
define a unique file name (to
create a new log file).

Duplicate/multiple
log files exist after
running a script to
create a custom
data log.

When using the custom data log
feature, do not use Log(on) and
Log(off) commands, and do not
enable Log Status /
Measurements from the File
menu. This will create additional
logs that save to the location
specified in the Status Tracing
Settings window.

Cannot see
standard variables
available for use in
script.

The list of standard variables is
generated (at the bottom of the
Sequencer) once the script is
run. The available variables will
correspond to the devices
referenced in the script.

Learn more about logging data in uProcess in the uProcess User Manual, or contact LabSmith.

For questions, please call +1 (925) 292-5161 or email sales@labsmith.com. LabSmith is a trademark of LabSmith,
Inc. ©2023 LabSmith, Inc. 08/2023. All specifications are subject to change without notice.

https://labsmith.com/download/LabSmith_uProcess_Manual_V2.1.pdf

	Introduction
	Creating a Data Log Manually
	Creating a Data Log Automatically
	Creating a Custom Data Log
	LogEntry
	LogMeasurements
	LogVariables
	LogItem
	Organizing LogHeader and LogRow Example Script

	Event-Triggered Logging
	Event-Triggered Logging Example Script

	Troubleshooting

